Precision Electroweak Measurements at Energy Frontier

Ashutosh Kotwal **Duke University**

Collisions That Changed The World

CagleCartoons.com

Snowmass Energy Frontier Workshop Brookhaven National Laboratory, April 4, 2013

Why are we here?

Why am I here?

Why am I here?

Q: Why is it important to you to your life measuring the W mass to high precision?

Why am I here?

Q: Why is it important to you to your life measuring the W mass to high precision?

A: Quantum loop effects are a lot of fun to measure, and I think they will continue to guide us towards the next (BSM) theory

Detecting New Physics through Precision Measurements

- Willis Lamb (Nobel Prize 1955) measured the difference between energies of ${}^2S_{\frac{1}{2}}$ and ${}^2P_{\frac{1}{2}}$ states of hydrogen atom
 - 4 micro electron volts difference compared to few electron volts binding energy
 - States should be degenerate in energy according to treelevel calculation
- Harbinger of vacuum fluctuations to be calculated by Feynman diagrams containing quantum loops
 - Modern quantum field theory of electrodynamics followed (Nobel Prize 1965 for Schwinger, Feynman, Tomonaga)

Motivation for Precision Measurements

Radiative corrections due to heavy quark and Higgs loops and exotica

Motivate the introduction of the ρ parameter: $M_W^2 = \rho [M_W(tree)]^2$ with the predictions $\Delta \rho = (\rho - 1) \sim M_{top}^2$ and $\Delta \rho \sim \ln M_H$

• In conjunction with M_{top}, the W boson mass constrains the mass of the SM Higgs boson, and possibly new particles beyond the standard model

Generic Parameterization

- Generic parameterization of new physics contributing to W and Z boson self-energies through radiative corrections in propagators
 - *S, T, U* parameters (Peskin & Takeuchi, Marciano & Rosner, Kennedy & Langacker, Kennedy & Lynn)

S, T and U

• Generic parameterization of new physics contributing to W and Z boson self-energies: S, T, U parameters (Peskin & Takeuchi)

M_w and Asymmetries are the most powerful observables in this parameterization

Extended Higgs Sector

• An example: extending the Higgs sector to two SU(2) doublets (required in SUSY) predicts additional neutral scalar and pseudo-scalar, and charged Higgs bosons

(from M. Baak *et al.* (Gfitter Group) Eur. Phys. J. C (2012) 72:2003) *T* parameter responds strongly to 2HDM parameters

Complementarity

• Note complementarity with precision h^0 measurements:

- for β - $\alpha = \pi/2$, h^0 couplings to WW and ZZ equal its SM couplings

(from M. Baak *et al.* (Gfitter Group) Eur. Phys. J. C (2012) 72:2003) *T* parameter responds strongly to 2HDM parameters

What is M_w sensitive to in MSSM?

- 2HDM embedded in MSSM characterized by tanβ and m_A
- At tree level, $m_h \sim m_Z \cos 2\beta$, $m_A \sim (2b/\sin 2\beta)^{1/2}$ with either
 - b not too small (> 20 GeV), or
 - tanβ large
 - otherwise m_h and m_A too small

- Using tree-level masses of Higgses, calculate *S, T, U* (Baak *et al.,* EPJC 72, 2003 (2012) and references therein) due to 2HDM
 - For allowable $\tan \beta$ and m_A , S, T, U < 1%

• M_w appears insensitive to 2HDM sector of MSSM

What is M_w sensitive to in MSSM?

 Caveat: tree-level masses of additional Higgses tend to become degenerate in MSSM

- Loop corrections to these masses may break degeneracy and induce non-zero S, T, U
 - If $m_{H^{+}}$ $m_{A} \sim 70 \text{ GeV}$, $T \sim 15\%$
 - With $\delta M_{_W} \sim 7$ MeV, can be 6σ effect
 - LHC, ILC should aim for $\delta M_{_{\rm W}} \sim 5$ MeV each

What is M_w sensitive to in MSSM? Other Models?

- We should find out $-M_w$ provides a window to what aspect of new physics ?
- Could provide an answer to the "challenge" from Chip and Michael:
 - If $M_w = 80420 \pm 7$ MeV, what would we do?
 - What would we have learnt?
- We need to distill down the loop effects in MSSM to the dominant ones
- Can yield a crisp answer for funding agencies, Congress and perhaps even the taxpayer
 - We should not underestimate the taxpayer's ability to appreciate deep physics if informed in crisp and simple way

M_W vs M_{top}

Mass splitting between stops and/or sbottoms induces large contribution to $M_{_{\rm W}}$

What is M_w sensitive to in MSSM?

- Expect large mass splitting between stop states
 - large m_{top} expected to induce large mixing
- Large mass splitting can make at least one stop light
- We should isolate and highlight the quantitative sensitivity of stop mass splitting on $\mathbf{M}_{\mathbf{w}}$

• In conjunction with direct stop search sensitivity, can make a crisp (compelling?) paragraph in Energy Frontier executive summary

2012 Status of $M_W vs M_{top}$

Improved $M_W vs M_{top}$ (half the current uncertainties)

Improved M_W vs M_{top} (half the current uncertainties)

Other Comments

- MSSM is nice (due to "minimal") but also fine-tuned at \sim 1% now?
- Is it time to move to NMSSM, and/or something else?
 - NMSSM answers the question how can μ term (which is SUSY-invariant) be close to Electroweak scale?

Other Comments

• MSSM is nice (due to "minimal") but also fine-tuned at \sim 1% now?

- Is it time to move to NMSSM, and/or something else?
 - NMSSM answers the question how can μ term (which is SUSY-invariant) be close to Electroweak scale?
- My recommendation: find a way to connect Energy Frontier physics with Dark Matter
 - Lot of circumstantial evidence that Dark Matter ~ TeV-scale WIMP
 - Dark matter *PROVES* that BSM physics exists
 - Taxpayer finds Dark Matter fascinating (perhaps even more than Higgs)
 - Its good to be in the intersection of Frontiers Venn diagram

Final Comments

• Loops are at the heart of Quantum Field Theory

Final Comments

- Loops are at the heart of Quantum Field Theory
- Loops have served us well so far, don't give up on them now
 - e.g. QCD quantum loops => running of α_s => mass scale (Λ_{QCD}) from scale-invariant Lagrangian => proton mass

Final Comments

- Loops are at the heart of Quantum Field Theory
- Loops have served us well so far, don't give up on them now
 - e.g. QCD quantum loops => running of α_s => mass scale (Λ_{QCD}) from scale-invariant Lagrangian => proton mass
- Loops => fine-tuning problem of SM should be taken seriously and should continue to guide our thinking
 - What keeps the Higgs boson's mass low?
 - May also solve half of the cosmological constant problem (on a log scale)
- Fine-tuning + Dark Matter = a physics case for Energy Frontier

